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Discrete Galerkin and Related One-Step Methods 
for Ordinary Differential Equations* 

By Bernie L. Hulme 

Abstract. New techniques for numerically solving systems of first-order ordinary dif- 
ferential equations are obtained by finding local Galerkin approximations on each sub- 
interval of a given mesh. Different classes of methods correspond to different quadrature 
rules used to evaluate the innerproducts involved. At each step, a polynomial of degree ii 
is constructed and the arcs are joined together continuously, but not smoothly, to form a 
piecewise polynomial of degree n and class CO. If the n-point quadrature rule used for the 
innerproducts is of order v + 1, v 2 n, then the Galerkin method is of order v at the mesh 
points. In between the mesh points, the jth derivatives have accuracy of order O(hmin (V ,n+1)) 

for j = 0 and O(hn-j+') for 1 < i < n. 

1. Introduction. This paper extends the concept of discrete Galerkin methods 
from those based on Gauss-Legendre quadrature [12] to methods based on any 
interpolatory quadrature formula. Basically, the idea is to approximate each element 
in the solution of a system of first-order ordinary differential equations by a con- 
tinuous piecewise polynomial on one subinterval at a time. Two other methods 
using piecewise polynomial approximation are shown to be equivalent to the discrete 
Galerkin methods. One is a one-step collocation method which Wright [13] has 
studied and which is related to some more general methods of Cooper [5], and the 
other is a quadrature method similar to that studied by Axelsson [1]. 

Having shown the equivalence of these methods, we easily obtain order of con- 
vergence results for all the methods. At the mesh points the errors are of order 0(h') 
in the step size h, where I' + 1 is the order of the quadrature formula used in the 
Galerkin approach. Special classes of methods are discussed along with their stability 
properties, and numerical examples are given. 

2. The Problem and the Approximating Subspaces. Let us consider solving 
only a single ordinary differential equation 

(1) U'(t) = f(t, U(t)), to < t, 

(2) u(to) = Uo 

on a finite interval [to, tN]. It is assumed that f(t, x) C Cr in [to, tN] X R, where R = 
(-_, c ), so that the exact solution u(t) C Cr+l[to, tN], where r > 1, and that f has 
a Lipschitz constant in this same region. 
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For the sake of simplicity, we define a uniform mesh r: t* = to + ih, 0 _ i <_ N, 
in order that we may approximate u(t) on the partitioned interval [t,, tN] by a piece- 
wise nth degree polynomial 

n+ 1 

(3) y(t)= Zb()(p,j(t), t < t < t,+1, O < i < N-i, 

where (p?,(t) are nth degree piecewise polynomial basis functions and n ? 1. Let 
us denote by Sn 0(w) the class of all such y E C0[t0, tN]. 

In the next three sections, we present three different methods for obtaining the 
same approximate solution y(t) C- 0(7r). It will be noticed that, in these one-step 
methods, h could be changed at each step, and therefore the methods and results 
would hold for a variable mesh also. Moreover, if u and f were vector functions, 
y could be taken to be a vector of piecewise nth degree polynomials, and the methods 
and results would carry over to systems of first-order equations. 

3. Discrete Galerkin Methods. If we require that y(t) C S, O(W) provides a 
local Galerkin approximation to u(t) on each subinterval of 7r, then y(t) must satisfy 

(4) y(ti+) = uo, i = 0, 

= (t_) >- 1, 

and 

rt 1+ 
(5) j [Y' - f(t, Y)VP,,k dt = 0, 1 < k < n, 0 < i < N - 1. 

ti 

To obtain a one-step numerical method, however, we replace the integral in (5) 
by an interpolatory quadrature formula 

rt +1n 

(6) j v(t) dt = h E WmV((o,,i) + O(hv+l), J > n, 

(7) (Tz,m = t, + Omh I < m < n, 

where O < 0? < 02 < ... < On ? 1and wm On 0,1 _ m ? n. The result is 

n 
(8) h E wm[y'(o-,,m) - f(o-,,m, y(o-,,m))]Vp ,k(OT11,m) = 0, 1 < k ? n. 

m=1 

We shall call any y(t) C S, ,,(r) which satisfies (4) and (8) for 0 < i < N -1 a one- 
step discrete Galerkin solution to (1)-(2). 

We may write (4) and (8) in matrix form as 

(9) AGb(t) = cG(b(i)) 0 < i < N - 1, 

where 

(10) b {b bi b,(0 T 

Ak, j = S,j() k = 1, 
(1 1) n 

= h E ~WWt, k-1 (?i, M,m 2 < k < n + 1, 1 ? j _ n + 1, 
m=1 
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CkG(b ) =y = y(t), k = 1, 
(12) n / n+ 

= m bWmf`T(7mj E ( ,,m) (Os,k-1(O_,m) 2 k < n +1. 
m=1 ' =1 

To be assured that AG is nonsingular, we assume that the determinant 

(13) I(P,,k(P0k,m)I1<k,m<n #? 0- 

Then A Gb( ) = 0 implies that y(t) = 0 and, in view of (8) and (13), that hWmY'(QT in) = 

0 1 < m < n. Since hwm # 0 by assumption, we have that y'(o-, m) = 1 < m < n, 
and consequently y 0 on [t,, ti+ ], b ) = 0, and AG is nonsingular. Thus, our 
numerical method depends on the solution of 

(14) b ) = (AGy 
I 
cG(b ) ) 

The existence of a unique solution to (14) is guaranteed for sufficiently small 
h as follows. Since 

I I(AG)-l cG(b) - (AG)-FlCG(b*)Il < II(AG)yI I K,o hLQGI Ib - b*II,, 

where L is the Lipschitz constant for f on [to, t,] X R and 
n n+1 

(15) QG max E IW(Pn,,k-1(0_,,m)I Z ko"Ju(( I, 
2<k<n+1 m=1 3=1 

the right side of (14) is a contraction mapping on R n+1 when 

(16) h < HG = (LQG I I(AG)yliI[l, 

and a successive substitution iteration will converge to the unique solution of (14). 
Notice that (8) generalizes the discrete Galerkin scheme in [12] where the inner 

products (iP,,k, 4pl,) are done exactly. That scheme coincides with the present 
method in the case of Gauss-Legendre quadrature because this rule gives exact 
results for the innerproducts just mentioned. 

It should be pointed out that there exist basis functions sc,,k and abscissae 0i,,m 

for which the determinant in (13) vanishes. For example, when n = 2 there is s0, 1 = 1, 
(P,,2 = [(2h)(t - t) - 1]2 and o-,,,, 0-,2 symmetrically placed about (ti + t,+1)/2. 
Therefore, one must choose carefully the basis functions and abscissae in the "or- 
thogonality" equations (8) to ensure that A G is nonsingular. An obvious choice is 
the basis P. ,k = ((t - t)jh)k-l, 1 < k ? n, which is unisolvent on [ti, ti+?], i.e., (13) 
holds for all sets of n distinct points o-,,, E [t4, t+1]. 

4. Collocation Methods. If we require that y(t) C- 0(S7) collocate to (1) at 
the points o-,, .m of (7), then y(t) must satisfy (4) and 

(17) hy'(o-,m) = hf(o-,,m, Y(O",m)), 1 ? m ? n, 0 < i < N - 1. 

We shall call any y(t) G Sn,0(r) which satisfies (4) and (17) a one-step collocation 
solution to (1)-(2). The stability of such solutions has been studied by Wright [13], 
and Cooper [5] has derived similar methods for equations of arbitrary order. 

In matrix form, (4) and (17) are 

(18) Acb(l) = cc(b(")), 0 ? i < N- 1, 
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where b "' is given by (10), and 

(1 9) A j= k = 1, 

(19 ki ()= 
( k = 1, 

(20) n+ 1\ 

(20)=- hf(oi kl, E , 2 < k < n + 1. 

Again, it is clear that Ac is nonsingular because Acb t = 0 implies y(t,) = y'(j m) 
= 0 1< m _ n, y-0 on [tt, t+1] and b 't = 0. Also, we have 

II(Ac)-Ycc(b) - (Ac)-lcC(b*)I Ic< J I(AC)Y1I1K hLQcIIb - b*-b. 

where 
n+ 1 

(21) Qc= max E IsJ(Ts,k-01, 
2<k<n+1 i=1 

so that (18) has a unique solution when 

(22) h < HC = (LQcII(AC)[ lc) 1[. 

When h satisfies both (16) and (22), it is obvious that the collocation solution 
is identical with the discrete Galerkin solution because the collocation solution 
also satisfies (8). Moreover, the collocation equations (4) and (17) are simpler than 
the discrete Galerkin equations (4) and (8) since no quadratures are involved, and 
no additional assumption such as (13) is required to guarantee the existence and 
uniqueness of the collocation solution. 

Wright [13] has already pointed out that these collocation methods are 
"equivalent" to a subclass of implicit Runge-Kutta methods in the sense that they 
produce the same discrete approximations. For some implicit Runge-Kutta methods 
which are not equivalent to collocation techniques, see Ehle [8, Chapter 4] and 
Chipman [4, Chapter 3]. 

5. Interpolatory Quadrature Methods. There is yet another class of methods 
to which the previous two schemes are equivalent in the sense that they all produce 
the same approximate solution given the same abscissae o-,, , in (7). Let us define 
the array 

(23) am, k = h1 f lk(t) dt, 1 < k, m < n, 

where the lk(t) are the Lagrange interpolation coefficients 

(24) lk(t) = I t- i I 1 < k < n. 
#=l;i5^k (7i,k (Ti,i 

We shall call any y(t) C S,, 0(r) which satisfies (4) and 
n 

(25) y(o-,m) = y, + h , am,kf(o0,k, Y((QiTk)), 1 < m < n, 
k=1 
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for 0 < i < N - 1, a one-step interpolatory quadrature solution to (1)-(2). Since 
(4) is the same as (25) for m = 1 when o, = t,, we should replace the equation 
(25) for m = 1 with 

(25t) Y'(o-,,i) = f(oj,, y(o,i)), when -,i =, t 

Certain methods of this type have been studied by Axelsson [1] and Hammer and 
Hollingsworth [9]. 

Equations (4) and (25) can also be put into matrix form 

(26) AQb() = cQ(b')), 0 < i < N - 1, 

where 

(27) AkQ= s(t%)A k = 1, 

= sct,i((oi,k-1), 2 ? k < n + 1, 1 < j < n + 1, 

and 

CQk(b(z)= y k = 1, 
(28) n / n+ 

y, + h E akl,l7,l, E b),(f 2 k < n +1. 

AQ is obviously nonsingular and (26) has a unique solution when 

(29) h < HQ = (LQQII(AQ)_1I11)-1, 

where 
n n+1 

(30) QQ= max E lak1, 1 1 sn ((0f? 0)l 
2<k<n+1 1=1 i=1 

When o- j, = t,, the second equation in (26) is defined from (25') by 

(27t) AQ = (0s, 1 < j < n + 1, 

and 
n+1 

(28') cQ(b",)) = f bU 3_ w(0(1)) 
2 =1 

and A' is still nonsingular. 
Since the Galerkin and collocation solutions, y(t), satisfy (17), we see that 

rt rt n 

y(t) = yI + f y'(s) ds = y, + f f(o, (,k, Y(o, ,k))lk(S) ds 
tX tX ~~~~k=1 

(31) n t 

Y= + E f(0f, ,k, Y(0fI ,k))j lk(S) ds, t, < t < t,+, 
k=1 

and, in particular, that y(t) satisfies (25) and (25'). Thus, when h is small enough 
to satisfy (16), (22) and (29), all three schemes provide the same approximate solution 
y(t) = y(t). The collocation method still seems to be the simplest since it does not 
require the computation of the am, k. However, the interpolatory quadrature view- 
point makes it clear that the weights in the Galerkin method are 
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(32) Wm=h 1 , J m(t) dt, I < m < n, 

and, from (31), the solution for all three methods satisfies 
n 

(33) Yj+j = y, + h , wmf((Q m, YQT,m)), 0 ? < N - 1. 
m=1 

6. Order of Convergence. In this section, we use the theory given in Henrici 
[10, Chapter 2] of d.iscrete one-step methods to derive asymptotic error bounds for 
the discrete values y(t) = y, given by the three methods above. Continuous error 
bounds are then obtained from the discrete ones. 

It follows immediately from (33) that all three methods may be written in terms 
of an increment function 4 as 

(34) Y,+i = y, + h(D(tl, y,; h), 0 < i < N - 1, 

where 

n 

(35) f(tt, yi; h) = E wmf(0i,m, y(o,,m)). m=1 

In order for the discrete one-step theory to apply, we must show that (D is Lipschitz 
continuous with respect to y in Q = [to, tN] X R X [0, ho]. If, for any i, 0 < i < N - 1, 
and any y* C- R, y*(t) is the approximate solution to u' = f(t, u), u(t,) = Y* t, 
t < ti+1, given by the above methods, then (31) holds for y*: 

n t 

(36) y *(t) = y + f(07,k, Y *((i,k)) lk (S) ds, t, < t _ t +. 
k=1 

Subtracting (36) from (31) and letting 
n t 

(37) _ max J lk(s) ds < hBo, 0 < i < N- 1, 
k=1 t,<t<t,+ t 

we find that 

(38) max y(t) - y*(t)l < 1 IY - Y*, 0 < i < N- 1, 
t t < t < t, I+ 1 - hoBoL 

where 0 < h < ho < (BoL)- . The Lipschitz condition then follows from (35) and 
(38) since, for 0 < h ? ho and 0 < i < N - 1, 

(39) k4(t,, y,; h) - d1(t,, y*; h)l < LW L - - 1- h0BoL 
l,-Y1 

where W = EnZ=1 IWmI. 
The discrete error bounds are now derived in 
THEOREM 1. Assume that f(t, x) C Cr in [to tN] X R so that u(t) C Cr +[to, tN], 

and denote by L the Lipschitz constant for f in this region. Given a mesh 7r of size h, 
some basis of piecewise polynomials of degree n for the space Sn, o(r), distinct abscissae 

Om C [0, 1], 1 < m < n, and the associated interpolatory quadrature formula (6) of 
order v + 1, n < v _ r, let the constants HG, HC, HQ and Bo be defined as in (16), 



DISCRETE GALERKIN AND RELATED ONE-STEP METHODS 887 

(22), (29) and (37), respectively, and let the mesh size h satisfy 0 < h < h, < 
min{HG, HC, HQ, (B0L)-1}. If y(t) is the discrete Galerkin, collocation and inter- 
polatory quadrature solution to (1)-(2) defined in Sections 3, 4 and 5, respectively, 
then there exists a constant M such that 

(40) u2 - Y,I < MhV, 0 ? i < N. 

Proof. The local truncation error rT is defined from (33) by 
n 

, = u, +1 - U, - h E Wmt(-T2,m, U(o im)) 

t Z+1 n 

- f(t, u(t)) dt - h E wmf(o,'m U(Tf,m))- 
m=1 

Thus, in view of (6), 1r, I _Kh v+ 1, where K depends on the maximum value of u v +1 

on [t0, tN], and (40) follows immediately from Henrici's Theorem 2.2 [10]. Q.E.D. 
Continuous error bounds are derived in 
THEOREM 2. Let the hypotheses of Theorem 1 hold. Then there exist constants 

E, 0 < j < n, such that 

(41) max lu(t) - y(t)l < E0hmin(vn+l) n < v _ r, 
to-<t <tN 

and 

(42) max Iu( )(t) - y( )(t)l < Eh 3, 1 i j_ n, 0 ? i ? N- 1. 
t < t _ t t+, 

Proof. We write u(t) as follows, using the ni-point Lagrange interpolatory quad- 
rature formula: 

n 
rt 

(43) u(t) = u, + , f(o- ,k, U(O2,k)) ik(S) ds + Rn(t), t, _ t < t+ , 
k=1 t 

where R4(t) = O(hn+ 1). Subtracting (43) from (31) and using (37), we discover that 

max I u(t) - y(t)j ? - 1 + 

t t < t'+' ho 1 
( 

B)L -U1 - y' I + 0(h 0 ? 
i 

? 
N - 1, 

and (41) follows from (40). If we differentiate (43) and (31) j times, using R'i'(t) = 

0(h-- + ), and subtract, we have 

max iu(')(t) - y(')(t)l < LB,h1- max |u(o ,k) - y(G2 ,k)I + O(h n +1) 
t _t-<t +1 1<k<n 

for 1 ? j < n, 0 < i ? N - 1, where 

n 

max 4 <1)(t)i ? h13Bj. 
k=1 t2 <t<t+?1 

Then (42) follows from (41). Q.E.D. 
Theorems 1 and 2 also hold for a variable mesh ir since h can be changed at each 

step, and the methods and the theorems can be carried over to systems of first-order 
equations by applying the single equation techniques to each equation in the system. 
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7. Some Specific Methods and Their Stability Properties. We shall use the 
following definitions of A-stability due to Dahlquist [6] and of strong A-stability 
due to Chipman [4]. 

Definition 1. A k-step method is called A-stable, if all its solutions tend to 
zero, as i -a co , when the method is applied with fixed positive h to any differential 
equation of the form u' = Xu, where X is a complex constant with negative real 
part. 

For a one-step method applied to u' = Xu, the approximate solution may be 
written as y,+i = E(Xh)y,, where E(Xh) is a rational approximation to exp(Xh). 
Therefore, a one-step method is A-stable if and only if JE(Xh)l < 1 for Re(Xh) < 0. 
It is possible, however, that E(Xh)l - 1 as Xhl -a o. In order to define a special 
kind of A-stability, which guarantees that y, tends to zero rapidly when j Xhl >> 1, 
we use 

Definition 2. A one-step method is strongly A-stable if y, + 1 = E( Xh)y, IE( Xh) < 1 
for Re(Xh) < 0, and JE(Xh)l -> 0 as Re(Xh) -> - . 

We remark that strongly A-stable methods should be especially effective on stif 
systems of equations since rapidly decaying components of the exact solution can 
be approximated by rapidly decaying components of the approximate solution for 
any step size h. 

Several classes of collocation and quadrature methods already have been in- 
vestigated for stability, and these results therefore hold for the equivalent Galerkin 
methods. Since the order of accuracy of a method is one less than the order of the 
associated quadrature (Theorem 1), it is convenient to classify the methods according 
to the abscissae used and thus deduce the order of the method. 

The most accurate methods are those using the n Gauss-Legendre points. The 
order of these methods is O(h2), and Ehle [7] has shown that they are all A-stable 
by proving that Y,+ = P ,(Xh)y,, where Pn n(Xh) is the nth diagonal Pade rational 
approximation to exp(Xh) with the properties IPn, ,(Xh)l < 1 for Re(Xh) < 0 and 
IP. n(Xh)l -> 1 as Re(Xh) -> - oa. Ehle was studying the implicit Runge-Kutta 
methods of Butcher [2], but in the Gauss-Legendre case these are equivalent at the 
mesh points to our Galerkin methods [12]. An alternate proof of A-stability is given 
by Wright [13]. 

The next most accurate methods are those based on the n Radau points, with 
either the left or the right endpoint fixed, i.e., either u, 1 = t, or 1 . n = t, +1. Although 
they are both of order O(h2 n-1), Wright [13] has shown that the left endpoint methods 
are not A-stable, while Axelsson [1] has shown that the right endpoint methods are 
strongly A-stable because Y,+ = Pn,n_l(Xh)y, and this subdiagonal Pade approxima- 
tion is such that lPnn-1(Xh)l < 1 for I Xhl < 0 and lPn,,-1(Xh)l -0 as Re(Xh) -a . 

The Lobatto methods, which have both endpoints fixed u, = t4 and u,71 
= I+ 

are of order O(h2n-2). They are A-stable [1], [13] since Y2-? = Pn_1l,nl(Xh)y,. It 
should be remarked that our Lobatto and Radau (right endpoint) methods are not 
equivalent to Butcher's corresponding implicit Runge-Kutta methods II and III 
[3] since Ehle [8, Chapter 4] has shown the latter not to be A-stable. 

Methods based on equal weight Chebyshev formulae [11, Section 8.13] are of 
order O(hn+ 1) for n odd and O(hn+ 2) for n even. Also, methods associated with 
Newton-Cotes formulae [11, Section 3.5] are of order O(hn) for n even and O(hn+ 1) 
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for n odd. And, finally, arbitrarily chosen abscissae would be expected to yield only 
O(h') accuracy. Wright [13] has proved that any two, three or four symmetrically 
placed abscissae will produce A-stable methods. 

8. Sample Calculations. In the following tables, we present results for the 
problem 

(44) U'(t) = u - (2t/u), U(0) = 1, u(t) = (2t + 1)1/2, 0 ? t _ 1, 

computed from the collocation equations (4) and (17) using the basis functions 
(P, i(t) = ((t - t,)/h)3-1, 1 _ j _ n + 1, 0 < i < N - 1. Each table concerns one 
of the classes of methods discussed in Section 7 and illustrates the order of con- 
vergence results of Theorem 1 for each class by showing the discrete error norms 

(45) I|e(t; h)II' - max |e(t,; h)I, 
O s i 'N 

for h = 1/N, 1 < N < 6, where e = u - y, as well as showing in parentheses the 
computed orders of convergence 

6) X = ~~~~~~log[l le(t; hj)| | /| e(t; h21l' (46) w - 
~~~~~~log(hl/h2) 

based on successive mesh sizes h1 and h2. 
The nonlinear equations (18) were iterated at each step [ti, t,+ ] until y+1 = 

n+1 b"' satisfied a relative error tolerance of 10-11. The reader will notice irregu- 
larities in the computed orders of convergence for the more accurate methods. This 
occurs when the theoretical maximum relative errors are significantly smaller than 
the relative error tolerance of 10-11. Also, the two-point Radau method failed to 
satisfy the relative error tolerance test for h = 1. 

TABLE 1. Error Norms for n-Point Gauss-Legendre 

h n = 2 n = 3 n = 4 n = 5 n = 6 

1 1.47(10)-2 7.08(10)-4 2.95(10)-5 1.17(10)-6 4.71(10)-8 
1/2 1.39(10)-3(3.40) 2.22(10)-5(4.99) 3.26(10)-7 (6.50) 4.87(10)-9 (7.90) 7.85(10)-11(9.23) 
1/3 3.07(10)-4 (3.72) 2.40(l0)-6(5.49) 1.78(l0)-8 (7.17) 1.41(10)-10(8.74) 2.66(l0)-12(8.34) 
1/4 1.01(10)-4 (3.84) 4.67(10)-7(5.69) 2.08(10)-9 (7.47) 9.06(l0)-12(9 .54) 2,98(10)-13(7.61) 
1/5 4.25(10)-5(3.90) 1.28(10)-7(5.80) 3.79(10)-10(7.63) 3.84(l0)-13(14.17) 1.08(l0)-12(-5.76) 
1/6 2.08(10)-5(3.93) 4.40(10)-8(5.86) 9.38(10)-11(7.66) 4.55(10)-13(-0.93) 1.61(10)-12(-2.18) 

TABLE 2. Error Norms for n-Point Radau (right endpoint) 

h n n=2 n=3 n=4 n= 5 n=6 

1 nonconv. 3.60(10)-3 1.75(10)-4 7.49(10)-6 3.08(10)-7 
1/2 1.01(10)-2 2.14(10)-4(4.07) 3.63(10)-6(5.59) 5.68(10)-8 (7.04) 9.08(10)-10(8.41) 
1/3 3.33(10)-3(2.74) 3.45(10)-5(4.50) 2.93(10)-7(6.20) 2.38(10)-9 (7.82) 2.09(10)-11(9.30) 
1/4 1.47(10)-3(2.85) 8.95(10)-6(4.69) 4.54(10)-8(6.48) 2.23(10)-10(8.23) 2.09(1O)-12(8.00) 
1/5 7.70(10)-4(2.90) 3.08(10)-6(4.78) 1.03(10)-8(6.64) 3.35(10)-12(8.50) 1.02(10)-12(3.23) 
1/6 4.52( 10)-4 (2.92) 1.27(l0)-6(4.84) 3.03(10)-9(6.73) 6.03(l0)-12(9.40) 1.47(l0)-12(-2.03) 
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TABLE 3. Error Norms for n-Point Lobatto 

h n = 2 n = 3 n = 4 n = 5 n = 6 

1 2.68(10)-i 1.59(10)-2 1.11(l0)-3 5.78(10)-5 2.62(10)-6 
1/2 5.24(10)-2(2.36) 1.73(10)-3(3.20) 4.00(10)-5(4.79) 7.30(10)-7 (6.31) 1.22(10)-8 (7.75) 
1/3 2.32(10)-2(2.01) 4.0O(10)-4(3.62) 4.55(10)-6(5.36) 4.21(10)-8 (7.04) 3.68(10)-10(8.63) 
1/4 1.31(10)-2(1.99) 1.35(10)-4(3.78) 9.08(10)-7(5.61) 5.04(10)-9 (7.38) 2.63(10)-11(9.16) 
1/5 8.37(10)-3(1.99) 5..71(10)-5(3.86) 2.52(10)-7(5.74) 9.31(10)-10(7.57) 2.84(l0)-12(9.98) 
1/6 5.82(10)-3(1.99) 2.80(10)-5(3.90) 8.75(10)-8(5.81) 2.30(10)-10(7.67) 3.27(1O)-13(11.86) 

TABLE 4. Error Norms for n-Point Equal Weight Chebyshev 

h n=2 n=3 n=4 n=5 n=6 

1 1.47(10)-2 4.46(10)-3 5.78(10)-4 2.47(10)-4 3.97(10)-5 
1/2 1.39(10)-3(3.40) 4.40(10)-4(3.34) 2.15(10)-5(4.75) 9.81(10)-6(4.66) 6.10(10)-7 (6.02) 
1/3 3.07(10)-4(3.72) 1.00(10)-4(3.65) 2.48(10)-6(5.32) 1.18(10)-6(5.23) 3.80(10)-8 (6.85) 
1/4 1.01(10)-4(3.84) 3.38(10)-5(3.79) 4.98(10)-7(5.58) 2.42(10)-7(5.51) 4.71(10)-9 (7.25) 
1/5 4.25(10)-5(3.90) 1.43(10)-5(3.86) 1.39(l0)-7(5.72) 6.83(l0)-8(5.66) 8.87(10)-10(7.48) 
1/6 2.08(10)-5(3.93) 7.01(10)-6(3.90) 4.83(10)-8(5.80) 2.39(10)-8(5.76) 2.21(10)-10(7.63) 

TABLE 5. Error Norms for Newton-Cotes, Ok = (k - 1)/(n - 1), 1 ? k ? n 

h n = 2 n = 3 n = 4 n = 5 n = 6 

1 2.68(10)-1 1.59(10)-2 3.58(10)-3 6.48(10)-4 1.90(10)-4 
1/2 5.24(10)-2(2.36) 1.73(10)-3(3.20) 3. 57(10)-4(3.33) 2.69(10)-5(4.59) 7.60(10)-6(4.65) 
1/3 2.32(10)-2(2.01) 4.O0(10)-4(3.62) 8.26(10)-5(3.61) 3.26(10)-6(5.21) 9.34(10)-7(5.17) 
1/4 1.31(10)-2(1.99) 1.35(10)-4(3.78) 2.81(10)-5(3.75) 6.69(10)-7(5.50) 1.94(10)-7(5.45) 
1/5 8.37(10O)-3(j1.99) 5.71(10)-5(3.86) 1.19(10)-5(3.83) 1.89(10)-7(5.66) 5.55(l0)-8(5.62) 
1/6 5.82(10O)-3(j1.99) 2.80(10)-5(3.90) 5.89(l0)-6(3.88) 6.62(l0)-8(5.76) 1.96(l0)-8(5.72) 

TABLE 6. Error Norms for Ok = (2k - 1)/2n, 1 < k _ n 

h n =2 n = 3 n =4 n = 5 n = 6 

1 3.05(10)-2 6.49(10)-3 1.79(10)-3 4.46(10)-4 1.49(10)-4 
1/2 6.99(10)-3(2.13) 6.69(10)-4(3.28) 1.67(10)-4(3.42) 1.88(10)-5(4.57) 5.82(10)-6(4.68) 
1/3 3.00(10)-3(2.08) 1.54(10)-4(3.62) 3.80(10)-5(3.65) 2.29(10)-6(5.19) 7.12(10)-7(5.18) 
1/4 1.67(10)-3(2.04) 5.22(10)-5(3.77) 1.28(10)-5(3.78) 4.73(10)-7(5.49) 1.48(10)-7(5.46) 
1/5 1.06(10)-3(2.03) 2.21(10)-5(3.85) 5.43(l0)-6(3.85) 1.34( 10)-7 (5.65) 4.22(l0)-8(5.62) 
1/6 7.35(10)-4(2.02) 1.09(10)-5(3.89) 2.67(10)-6(3.89) 4.71(10)-8(5.75) 1.49(10)-8(5.72) 
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